Thursday, 7 February 2013

Lorentz Attractor

The following scrip make a fantastic video effect and it's based on  Lorentz attractor.
The Lorents system of differential equation can be studied here: http://en.wikipedia.org/wiki/Lorenz_system, but see the video:



The original code is:
REBOL [
    Title:       "Lorentz Attractor"
    Date:       24-Feb-2009
    Version:     1.0.0
    File:       %lorentz.r
    Author:     "John Niclasen"
    Purpose:     {Visualization of the Lorentz Attractor.}
]
context [
hsv2rgb: func [
    H S V
    /local
        RGB
        var_h var_i
        var_1 var_2 var_3
        var_r var_g var_b
][
    RGB: 0.0.0
    either S = 0         ;HSV values: 0 ÷ 1
    [
        RGB/1: to-integer V * 255
        RGB/2: to-integer V * 255
        RGB/3: to-integer V * 255
    ][
        var_h: H * 6
        if var_h >= 6 [var_h: 0]         ;H must be < 1
        var_i: to-integer var_h
        var_1: V * (1 - S)
        var_2: V * (1 - (S * (var_h - var_i)))
        var_3: V * (1 - (S * (1 - (var_h - var_i))))
   
        switch var_i [
            0 [var_r: V         var_g: var_3     var_b: var_1]
            1 [var_r: var_2     var_g: V         var_b: var_1]
            2 [var_r: var_1     var_g: V         var_b: var_3]
            3 [var_r: var_1     var_g: var_2     var_b: V     ]
            4 [var_r: var_3     var_g: var_1     var_b: V     ]
            5 [var_r: V         var_g: var_1     var_b: var_2]
        ]
   
        RGB/1: to-integer var_r * 255       ;RGB results: 0 ÷ 255
        RGB/2: to-integer var_g * 255
        RGB/3: to-integer var_b * 255
    ]
    RGB
]
sigma: 3.0
rho: 26.5
beta: 1.0
x: 0.0
y: 1.0
z: 1.0
dt: 0.005
ddt: [x (sigma * (y - x)) y (rho * x - (x * z) - y) z (x * y - (beta * z))]
nx: ny: nz: none
dx: dy: dz: none
h: 0.0
s: 1.0
v: 1.0
c: red
map: make image! 800x400
do-step: does [
    dx: do ddt/x
    dz: do ddt/z
    nx: x + (dx * dt)
    ny: y + ((do ddt/y) * dt)
    nz: z + (dz * dt)
    a: either zero? dx [pi / 2] [arctangent/radians dz / dx]
    s: (cosine/radians a) ** 0.4 + 0.2 * 5.0 / 6.0
    ;v: 2.0 - ((cosine/radians a) ** 0.5 + 0.8 * 5.0 / 9.0) / 2.0
    v: 1.2 - s * 5.0 / 6.0
    c: hsv2rgb h s v
    draw map reduce [
        'scale 0.1 0.1
        'line-width 20.0 'line-cap 'square 'line-join 'round
        'pen black
        'line
        as-pair (4000 + round x * 240.0) (4000 - round z * 80.0)
        as-pair (4000 + round nx * 240.0) (4000 - round nz * 80.0)
        'pen c
        'line
        as-pair (4000 + round x * 240.0) (4000 - round z * 80.0)
        as-pair (4000 + round nx * 240.0) (4000 - round nz * 80.0)
    ]
    x: nx
    y: ny
    z: nz
    if 1.0 < h: h + 0.0002 [h: 0.0]
]
main: layout [
    origin 0
    i: image map rate 50 feel [
        engage: func [f a e] [
            if a = 'time [
                loop 8 [do-step]
                show i
            ]
        ]
    ]
    at 0x0
    key #"^q" [unview]
]
view/title main "Lorentz Attractor"
]   ; context


Obviously I immediately tried to play with this script and I added the feature to change Lorentz equations parameters:

Here is my script:
REBOL [
    Title:       "Lorentz Attractor"
    Date:       24-Feb-2009
    Version:     2.0.0
    File:       %lorentz.r
    Author: ["John Niclasen" "Massimiliano Vessi"]
    Purpose:     {Visualization of the Lorentz Attractor.}
]
context [
hsv2rgb: func [
    H S V
    /local
        RGB
        var_h var_i
        var_1 var_2 var_3
        var_r var_g var_b
][
    RGB: 0.0.0
    either S = 0         ;HSV values: 0 ÷ 1
    [
        RGB/1: to-integer V * 255
        RGB/2: to-integer V * 255
        RGB/3: to-integer V * 255
    ][
        var_h: H * 6
        if var_h >= 6 [var_h: 0]         ;H must be < 1
        var_i: to-integer var_h
        var_1: V * (1 - S)
        var_2: V * (1 - (S * (var_h - var_i)))
        var_3: V * (1 - (S * (1 - (var_h - var_i))))
   
        switch var_i [
            0 [var_r: V         var_g: var_3     var_b: var_1]
            1 [var_r: var_2     var_g: V         var_b: var_1]
            2 [var_r: var_1     var_g: V         var_b: var_3]
            3 [var_r: var_1     var_g: var_2     var_b: V     ]
            4 [var_r: var_3     var_g: var_1     var_b: V     ]
            5 [var_r: V         var_g: var_1     var_b: var_2]
        ]
   
        RGB/1: to-integer var_r * 255       ;RGB results: 0 ÷ 255
        RGB/2: to-integer var_g * 255
        RGB/3: to-integer var_b * 255
    ]
    RGB
]
sigma: 3.0
rho: 26.5
beta: 1.0
x: 0.0
y: 1.0
z: 1.0
dt: 0.005
ddt: [x (sigma * (y - x)) y (rho * x - (x * z) - y) z (x * y - (beta * z))]
nx: ny: nz: none
dx: dy: dz: none
h: 0.0
s: 1.0
v: 1.0
c: red
map: make image! 800x400
do-step: does [
    dx: do ddt/x
    dz: do ddt/z
    nx: x + (dx * dt)
    ny: y + ((do ddt/y) * dt)
    nz: z + (dz * dt)
    a: either zero? dx [pi / 2] [arctangent/radians dz / dx]
    s: (cosine/radians a) ** 0.4 + 0.2 * 5.0 / 6.0
    ;v: 2.0 - ((cosine/radians a) ** 0.5 + 0.8 * 5.0 / 9.0) / 2.0
    v: 1.2 - s * 5.0 / 6.0
    c: hsv2rgb h s v
    draw map reduce [
        'scale 0.1 0.1
        'line-width 20.0 'line-cap 'square 'line-join 'round
        'pen black
        'line
        as-pair (4000 + round x * 240.0) (4000 - round z * 80.0)
        as-pair (4000 + round nx * 240.0) (4000 - round nz * 80.0)
        'pen c
        'line
        as-pair (4000 + round x * 240.0) (4000 - round z * 80.0)
        as-pair (4000 + round nx * 240.0) (4000 - round nz * 80.0)
    ]
    x: nx
    y: ny
    z: nz
    if 1.0 < h: h + 0.0002 [h: 0.0]
]
main: layout [
    origin 0
    i: image map rate 50 feel [
        engage: func [f a e] [
            if a = 'time [
                loop 8 [do-step]
                show i
            ]
        ]
    ]
    at 0x0
    key #"^q" [unview]
    across
    label "Sigma:"
    sigma-s: slider 200x16 0.5 [sigma:   6 * face/data]
    btn "reset values" [
        sigma: 3
        rho: 26.5
        beta: 1
        sigma-s/data: rho-s/data: beta-s/data: 0.5
        show [sigma-s rho-s beta-s]
        ]
    btn "clear screen" [draw map [fill-pen black box black 0x0 800x400] ]  
    return
    label "Rho"
    rho-s: slider 200x16 0.5 [rho:   53 * face/data]
    return
    label "Beta"
    beta-s: slider 200x16 0.5 [beta:   2 * face/data]
   
]
view/title main "Lorentz Attractor"
]   ; context

No comments:

Post a Comment